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1 INTRODUCTION

| originally intended to open this literature review with the disclaimer that no Al-generated text was used in
the writing of this paper, a disclaimer that even a year ago would have seemed needless and even
ridiculous. However, as | considered the statement, | realized that it was not precisely true. Although the
words in this paper are my own, | have used Microsoft Word’s auto-complete feature for several common
phrases. | have taken advantage of spell-check. The table of contents and table of figures have been
automatically generated by Word, and the reference numbers and bibliography have been automatically
generated by Zotero. Some of these features are too simplistic to qualify for what is generally meant by
“Al.” Others, such as auto-complete, make explicit use of Al. Regardless of their complexity, these are all
tasks that would have been done painstakingly by hand only a few decades ago. Our lives, and our work,
have been augmented by Al in small ways for many years. However, with the release of ChatGPT only a
few months ago [73], the general public now has access to a text-generation tool that far outperforms the

state of the art of even experimental systems from just a few years ago.

The past few years have seen rapid developments in the field of Natural Language Processing (NLP).
Large Language Models (LLM) using the transformer architecture [65] and trained on vast data sets with
hundreds of billions of parameters have improved the state of the art on a wide variety of NLP tasks
[6,54]. The release of OpenAl's ChatGPT to the general public has generated considerable excitement.
Both Google and Meta have released their own LLMs within the last few months, including Google’s Bard
[75] which is set to compete directly with ChatGPT, and Meta’s LLaMa [78], which is targeted at

researchers.

The primary reason for the high level of public and research interest in LLMs is that LLMs exhibit a
surprising degree of flexibility in their ability to adapt to new problems even when provided with only a few
examples of the desired output, or in some cases even with no examples of the desired output at all [6].
There is even some reason to think that LLMs using the transformer architecture could lead to the first
practical Artificial General Intelligence (AGI). There have already been promising advances in this
direction, such as a recently introduced “generalist agent” called Gato that can act as a chatbot, caption
pictures, play video games, and even control a robotic arm in block-stacking challenges, all from a single

pretrained LLM and without any retraining between tasks [56].

With all these recent successes, there is enormous interest over whether ChatGPT and its successors will
eventually replace human knowledge workers for tasks requiring a combination of writing and specialized
knowledge. Transformers including Codex [9] and CodeBERT [21] have shown considerable promise in
generating working computer code from natural language prompts, leading to speculation that the task of
computer programming may be handled mostly or even entirely by Al systems within the next few

decades, drastically changing the profession of computer programming [68].



However, the history of Artificial Intelligence research suggests that we ought to be cautious with such
predictions. Since the 1960’s, experts and laypeople alike have predicted the arrival of human-level Al
within 15-25 years [2]. Over-enthusiasm for the promise of new Al technologies has been a major
contributor to two Al Winters, periods when enthusiasm (and funding) for Al research was drastically
reduced, lasting from 1974-1980, and 1987-1994 [79]. Natural Language Processing was susceptible to
unrealistic expectations in its early development, with early hopes that natural language could be
translated into a formal knowledge representation scheme if only a few problems of ambiguity and
unusual sentence structures could be overcome. It quickly became clear that this approach was

untenable, and that ambiguity, assumption, and context are intrinsic to natural language.

LLMs currently exhibit several major shortcomings. One issue is that even the best language models
often give incorrect answers, even when the correct answer is contained within their dataset [43]. Models
trained on large bodies of text often mimic common misconceptions that are repeated within their training
data [43,52,66]. Another issue is that of Al Alignment, which is the problem of aligning Al reasoning with
human values. Although it can be argued that an LLM does not have values per se, it is nearly impossible
for a human being to interact with a system designed to mimic human communication without
anthropomorphizing the system to at least some degree. Even when people are specifically told that they
are interacting with an Al and not a human being, their actions can still be influenced by the responses
generated by the Al [40]. Unfortunately, ChatGPT has been shown to produce inconsistent ethical
reasoning [40], and has already generated controversy with accusations of political bias [1,32]. Concerns
over the potential political impacts of bias within Al and particularly within large language models, which
have a natural tendency to reflect the status quo, have come from both politically conservative [1,32] and
progressive [37] critics. The high cost of training a transformer has also raised concerns over
environmental impact and the consolidation of access to Al to only those with the resources to fund and
maintain these immense systems [37]. As LLMs are put to the test with ever more complex tasks it seems
likely that problems of accuracy, ethics, and bias, which are often intractable even in human reasoning,
will prove to be substantial obstacles. Just as the problem of ambiguity in early NLP led to new areas of
research and deepened our understanding of language itself, this new set of problems is likely to kick off
new waves of research and new ways of understanding these issues, rather than being mere stumbling

blocks to be overcome.

One reason there is so much speculation about these systems, ranging from deep pessimism to extreme
optimism, is that the full extent of their limits and capabilities is not yet fully known. Several key abilities of
LLMs were discovered rather than designed [6,54], so it is tempting to speculate about how well they may
perform on any task where they have not yet been tested. One of the keys to the recent improvement in
LLM performance has been a dramatic increase in the scale of the systems. GPT-2 was trained on 1.5
billion parameters. GPT-3 is over one hundred times larger, with 175 billion parameters, and

demonstrates considerably better results [6]. This has led to a great deal of optimism that any problems



with modern transformers can be resolved by increasing the scale further. There are technical and
financial limitations to making the model too large, but given the consistent improvement in computation
power over the past several decades it is reasonable to assume that these will eventually be overcome.
However, there is also reason to believe that some of the most serious issues with LLMs will not be

solved simply by increasing the size of the training data [37,43].

Research is ongoing and developing rapidly. A recent work by Wei et al. (2023) showed that many of the
shortcomings outlined above can be addressed by prompting LLMs to output an entire chain of reasoning
rather than just the final answer [66]. This will be explored further in sections 4 and 5. GPT-4 was
released shortly before the submission of this paper and claims even better results than previous versions
of GPT. However, given the newness of GPT-4 there has not been sufficient time for independent
confirmation of OpenAl’s claims of GPT4’s capabilities. Furthermore, OpenAl has not disclosed many of
the details of GPT-4’s training or construction, including the model size, citing concerns over competition
and potential misuse of the system [52].

Given the uncertainty surrounding these powerful new systems, it makes sense to devote considerable
research effort towards discovering their current capabilities and limitations. There is also insight to be
gained by re-examining past efforts in NLP to learn from their successes and failures. This literature
review will give a brief overview of the challenges that have limited previous approaches to NLP, highlight
the strengths of prior systems that would be valuable to re-create in modern Als, discuss the strengths

and weaknesses of modern LLMs, and propose directions for future research.



2 LOGIC AND STRUCTURE IN LANGUAGE

2.1 Grammar

A Formal Language is a language with clearly defined rules and structure [61]. In a formal language,
each sentence follows a clearly defined grammar, and this structure usually helps to define the meaning
of the sentence. Programming languages are one clear example. In most programming languages, any
line of code has only one correct interpretation. This is a necessary restriction on programming
languages, so that commands written in a human-readable language like C, Java, Prolog, or SQL can be

converted into processor-level commands to be executed.

Most programming language grammars belong to the family known as Context Free Grammars (CFG),
but this is not the only family of grammar, nor is it the most powerful family of formal grammars. According
to the Chomsky Hierarchy, grammars can be divided into one of four classes, arranged by their
generative capacity, where each class has the power to describe all languages described by any less

powerful class, as well as some additional languages [12,61]. The four classes are:

¢ Recursively Enumerable Grammars have unrestricted rules. Both sides of any rule can have
any number of terminal and nonterminal symbols. Example: ABC ->D E '

o Context-Sensitive Grammars require that the right side of the rule contain at least as many
symbols as the left side. Example: AXB->AYB

o Context-Free Grammars (CFG) require that the left side of the rule consists of a single non-
terminal symbol. CFGs are popular for both natural-language and programming-language
grammars [61]. Example: A->B C D

e Regular Grammars consist of a single non-terminal symbol on the left side of each rule, and a
single terminal symbol optionally followed by a single non-terminal symbol on the right. Example:
A->bC

Many English sentences can be interpreted using a grammar. The result of interpreting a sentence with a
set of formal grammar rules is a Parse Tree which defines how each word in the sentence fits together
structurally. Figure 1 shows a parse tree for the simple sentence “/ ate an apple.” The parse tree shown in
Figure 1 could have been generated from a CFG, but not from a regular grammar, since the Sentence,

Noun Phrase, and Verb Phrase symbols all match sequences of multiple non-terminal symbols?.

"In all the examples on this page, capital letters represent non-terminal symbols (ex: A) and lowercase
letters represent terminal symbols (ex: a). In this case, ‘terminal’ does not refer to the symbol ending the
sequence, but rather that any non-terminal symbol can be resolved into a sequence of terminal symbols
by the application of one or more rules within the grammar (Ex: A -> BC; B->b C; C -> ¢; resolves to A ->
bcc).

2 In Figure 1 and Figure 2, non-terminal symbols are outlined (ex: “Noun Phrase” “Sentence”) and
terminal symbols are not outlined (ex: “I” “ate” “an” “apple”)
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However, full natural languages are not formal languages. In formal language, grammar is prescriptive, it
defines what statements are or are not legal within the language. In natural language, grammar is merely
descriptive, an attempt to recognize patterns within organically occurring speech and writing. Speech and
writing, however, rarely conforms strictly to a particular set of grammatical rules. Additionally, formal
languages are often designed to limit or entirely eliminate ambiguity, as is the case for programming

languages. Natural language, on the other

hand, is filled with both intentional and Figure 1: Parse Tree of the Phrase “I ate an apple.”
unintentional ambiguity, to such an extent

that the ambiguity cannot be easily isolated

Sentence

for most NLP tasks.

Verb Phrase

To see the significance of ambiguity in

natural language, note the ways in which | Verb | | Noun Phrase |
familiar programming languages are forced
to differ from natural language. Consider the | Determiner | | Noun |
following line of code in java or any C-like

ate an apple

language:

if(x<3)y=y*x;

There is only one possible interpretation of this statement. If the value stored in the memory defined by
the variable x is less than three, multiply the value stored in y by the value of x and store the result in y.
There is no ambiguity, there are no alternative interpretations. There may be special rules or exceptions
depending on the language and the types of the variables, but all of these will be clearly defined by the

rules of the programming language and executed the same way every time the program is run.

Even in cases where there is apparent ambiguity in a particular notation, programing languages provide
clear rules to delineate which interpretation is intended. Consider the following simple line of code, which

new students often struggle with:
xX=x+1;

Many students will object, “How can x = x + 1?2 This is a mathematical contradiction!” Of course, it must
then be explained that in this case the ‘=" indicates assignment, not comparison. Some programming
languages make this distinction by reserving entirely separate symbols for comparison and assignment,
such as ‘== for comparison and ‘=’ for assignment, as seen in many popular languages. Other languages
make the distinction entirely based on the rest of the command, using ‘=" for both assignment and
comparison, such as WHEN x =1 vs. SET x = 1in SQL. This sort of disambiguation is necessary for

every line of code to have only one possible meaning.



Natural language provides no such guarantee of disambiguation. Natural language is so inherently

ambiguous that any programming language that makes an effort to be easily readable will have to make
compromises to clarity for the sake of precision. Arguably, this conflict between the needs of precision in
programming languages and the ambiguous nature of natural language is why programming languages

have a reputation for being difficult and confusing to most laypeople.

Consider the following sentence: “Fall leaves fall and spring leaves spring.” [61] In this sentence, every
word except for “and” has multiple interpretations. Even the parts of speech are unclear. “Leaves” could
be a verb or a noun, or perhaps a verb in the first instance and a noun in the second. Any grammar
capable of representing each of these possible meanings would require multiple possible parse trees. An
example with several possible parses of this sentence is shown in Figure 2. There is no clear way to

choose between those interpretations, at least not from the grammar itself.

Even in the simple example provided in Figure 1, there is ambiguity in the meaning of each word. “Apple”
could refer to a fruit, or to an Apple computer, or to the entire company of Apple itself. These
interpretations seem unlikely in this sentence unless they were part of some sort of wordplay?, but the
point is that this determination needs to be made at all. There are also many cases where the normal
prescriptive rules of grammar do not apply within English, such as poetry, dialog, quotation, and

deliberate wordplay.

Tools and libraries intended to assist with NLP tasks have to take this ambiguity into account. For
instance, WordNet [20] defines for each word a list of Senses, each representing one possible use of the
word. For example, “leaves” has 6 noun senses and 14 verb senses defined in WordNet 3.1 (See
Appendix B). This can also be seen in ordinary dictionaries, which define multiple uses for any given

word.

Even if we accept that there will always be some ambiguity in language, we might still hope that a
grammar could parse most of the meaning out of most sentences. However, determining the rules for a
grammar that can do even that much is no simple task. For one thing, there is huge variety in how
grammatically correct sentences can be structured. Grammar also varies a great deal between
languages, meaning that grammar-based approaches to parsing natural languages run the risk of being

applicable only within a single language.

3 It is worth noting here that we cannot discount the possibility of wordplay, which is an important part of
natural language. An Al which can correctly parse natural language needs to understand both the likely
and unlikely meanings of a word. Furthermore, it is not always sufficient to pick the most likely intended
meaning, as multiple interpretations may be required to understand certain sentences such as joke
punchlines (ex: “A panda is a large mammal that eats shoots and leaves.”), literary prophecies (ex: “No
man can kill me.”), and wordplay (ex: “Nobody has stabbed me in the eye.”).
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Figure 2: Possible Parse Trees for "Fall leaves fall and spring leaves spring."
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There have been some attempts to find commonalities across languages that can somewhat mitigate this
problem, such as Role and Reference Grammar (RRG) [64], a linguistic theory of clause construction
across multiple languages. It is worth looking at RRG in more detail, as an example of a structure that can

be useful for modeling natural language.

RRG originated as a divergence from earlier theories which were overly focused on English at the
expense of grammatical structures found in other languages. It eschews standard formats for explaining
clause structure, since syntax varies from language to language and thus any model based on a specific
clause structure will necessarily impose some of the syntax of whatever language the model originated
from. Instead, RRG defines clauses in terms of a layered structure, including a nucleus, which includes
the predicates of the clause, a core, which includes the nucleus plus the arguments of the predicates, and
the periphery, which includes modifiers to the core. RRG claims that these three layers are universal

across languages, and that some languages also contain unique layers in addition to these three.

The RRG model is primarily concerned with the semantic relationships between different parts of a
sentence, and how these relationships can be defined in language-independent ways. It posits that in
complex sentences, clauses are related to each other in one of three ways: coordination, subordination,
and co-subordination, which is a form of dependent coordination. The following examples are provided for

each:

e Coordination: Fred talked to Mary, and she agreed to his suggestion.
e Subordination: Max called Sue, because he was going to be late for the party.

e Co-subordination: Having called Sue, Max left for the party.

Verb phrases are categorized as states, achievements, accomplishments, and activities. The following

examples are provided for verb phrase categories:

o State: The lamp is broken.
e Achievement: The lamp broke.

e Accomplishment: Bill broke the lamp.
o Activity: The lamp is shaking.

Noun phrases are broken up into subject and object phrases and are further classified as being an
ACTOR or UNDERGOER. The following examples are provided:

e The boy [SUBJ, ACTOR] ate the sandwich [OBJ, UNDERGOER].

e The sandwich [SUBJ, UNDERGOER] was eaten by the boy [ACTOR].
e The girl [SUBJ, ACTOR] ran down the stairs.

e The girl [SUBJ, UNDERGOER] got sick.

10



The subject and object can be further classified into more specific categories including agent, effector,

experiencer, locative, theme, or patient.

While RRG provides an interesting model for classifying the pieces of sentences in multiple languages, it
does not offer many practical insights into how this can overcome the inherent weaknesses of a
grammar-based approach to NLP. This points to another challenge in NLP, which is that there is a large
amount of research into linguistics that has been done and continues to be done within the humanities,
and this research is often irrelevant (at least at first glance) to the development of more powerful NLP
systems. Computer scientists are certainly not the first group to study the structure of language. However,
when language is studied from the perspective of the humanities there is little motive to attempt to
eliminate all ambiguity or define structure in strict formal logic. Although these are pre-requisites for logic-
based NLP systems, these impositions tend to hinder, rather than help, human understanding of
languages. Since the humanities and Al researchers have such different priorities, there has been less
collaboration between the two fields than might be hoped for, with each side often finding the work of the

other to be unhelpful or even irrelevant to their own particular needs [24].
2.2 Semantic Frames

Semantic Frames are a way of representing meaning within a sentence. A semantic frame defines a set
of semantic roles and how they interact within a sentence. For example, the frame of Questioning would
involve a Speaker (the one asking the question), an Addressee (the one being asked), a Message, a
Topic, and a Medium [25]. There are many strategies for structuring a set of frames. Frames can be
extremely broad and highly abstract, in some cases with as few as two roles such as proto-agent and
proto-patient. Conversely, frames can be made extremely narrow to parse very specific information such
as FROM_AIRPORT, TO_AIRPORT, and DEPART _TIME as roles within a sentence about a traveler's
flight itinerary. While highly specific roles such as these can be useful in niche applications, NLP
researchers have tended to prefer a middle-ground of frames which are abstract enough to be applicable
to a broad array of text, while still being specific enough to be useful. For example, the Judgement frame
contains the roles judge, evaluee, and reason, with a sample sentence provided of “[iqge She ] blames

[Evaiuee the Government | [reason for failing to do enough to help ].” [25]

One reason frames are such a valuable semantic tool is that Al systems can be trained to classify blocks
of text according to specific frames, and then to pick out words from the text that correspond to each role
in the frame [25]. The performance of frame-identification can be improved by categorizing frames into
Semantic Domains [26,30]. A semantic domain is a broad domain of human knowledge such as
Computer Science, Law, or Economics. Semantic domains theory seeks to improve upon semantic fields
by drawing on the insight of Ludwig Wittgenstein that “Meaning is Use” [69]. According to Wittgenstein, all
language is a form of linguistic game in which the meaning of words depends on the context of their use.

For example, the word virus as used in the domain of Biology has a different meaning when used in the

11



domain of Computer Science. Figure 2 provides several examples of domains, and frames within each

domain, along with sample predicates that indicate a likelihood that the text under consideration exists

within the frame in question. [25]

By identifying words from the same
domain in close proximity to one
another, it is possible to both predict
the domain the text is taking place
within and clarify ambiguity in the
meaning of the words themselves.
For example, if one encounters the
word fork, this could be a utensil, a
fork in the road, a fork in a multi-
threaded computer program, or other
uses depending on context.
However, by noting that within a
short space a text mentions a fork, a
spoon, a glass, and a napkin, we can
have much greater confidence that
the meaning of fork in this context is

a utensil. Domains have proven

Figure 3: Semantic Domains with Sample Frames and Predicates

Domain Sample Frames Sample Predicates
Body Action flutter, wink
Cognition Awareness attention, obvious
Judgment blame, judge
Invention coin, contrive
Communication Conversation bicker, confer
Manner lisp, rant
Emotion Directed angry, pleased
Experiencer-Obj  bewitch, rile
General Imitation bogus, forge
Health Response allergic, susceptible
Motion Arriving enter, visit
Filling annoint, pack
Perception Active glance, savour
Noise snort, whine
Society Leadership emperor, sultan
Space Adornment cloak, line
Time Duration chronic, short
[teration daily, sporadic
Transaction Basic buy, spend
Wealthiness broke, well-off

beneficial in many NLP tasks, including word-meaning disambiguation [28,30,46], text categorization [28],

term categorization [14], ontology learning [27], and multilinguality [29].

One additional benefit to using frames is that since frames have been widely used and studied, there are

readily available resources to encourage their use. FrameNet [3,35] is a widely used library of frames,

categorized into domains, and provided along with a set of annotated training data to help Al systems
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train to recognize the frames and domains that FrameNet provides. Figure 3 shows a sample of several

FrameNet frames and how they are organized. [25]

2.3 Named Entity Recognition

Named Entity Recognition (NER) is the task of identifying and labelling people, places, organizations,

locations, and other named entities within a text. There are several fundamental difficulties with NER, and

various techniques have been
developed for overcoming these
difficulties. Figure 4 shows an example
of a block of text from a piece of sports
news [55], which has been annotated
by an NER process. In this case,
“Blinker” is the name of an athlete, and
“Wednesday” is the name of an
organization. This is obviously not the
normal use of these words, and their
intended meaning is only clear in

context. Because of difficulties of this

Figure 5: Example of Ambiguous Entity Names

SOCCER - [PER BLINKER)| BAN LIFTED .

[LOC LONDON| 1996-12-06 [MISC Dutch] forward
[PER Reggie Blinker] had his indefinite suspension
lifted by [ORG FIFA| on Friday and was set to make
his  [ORG Sheffield Wednesday]| against
[ORG Liverpool| on Saturday . [PER Blinker| missed
his club’s last two games after |ORG FIFA| slapped a

comeback

worldwide ban on him for appearing to sign contracts jfor
both |ORG Wednesday| and |ORG Udinese| while he was
playing for [ORG Feyenoord).

sort, NER is highly dependent on prior knowledge and NER systems perform significantly better when

paired with a knowledgebase considering non-local features [55]. There are several possible mechanisms

for including non-local knowledge, such as unlabeled bodies of text and dictionary-like structures called

gazetteers gathered from various sources including Wikipedia.

Named entities in the beginning of documents tend to be more easily identifiable and match gazetteers

more often. Because of this, NER accuracy can be improved by each individual NER classifications

taking into consideration prior classifications that were made earlier in the text. For example, a text that

references Albert Einstein in one sentence, and just Einstein in a later sentence, is likely referring to the

same person. One problem with this technique is that the use of a specific word may not always signify

the same entity. For example, a news story that first mentions Australia (the country) and later mentions

The Bank of Australia (an organization).

NER can be further improved by implementing a two-phase system. In the first stage, NER labelling is

performed using only local features. The second stage makes use of both the unlabeled source text and

the results of the first-stage NER results. The result is a system which is both faster and more accurate

than single-phase NER systems [39].

There are still some weaknesses to this approach. Many of the best NER systems rely on large corpora of
labelled external data to train the NER algorithm. However, large corpora of labeled data are not readily
available in many languages other than English and are labor-intensive to produce. Therefore, an NER
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algorithm that is designed to operate without any reliance on a large body of labelled data has the
potential to be more effective across multiple languages [41].

2.4 Common-Sense Reasoning

Common-Sense Reasoning is a field which seeks to define common-sense assumptions in terms of
formal logical axioms. When reading any text, but particularly narrative-based text, humans will naturally
make a wide variety of assumptions based on their experience of the world which are not explicitly stated
in the text. For instance, if an object is dropped, it will fall until it hits the ground or a surface, or is caught
before colliding, except in rare circumstances such as underwater or in a zero-gravity environment.*
Unless this sort of knowledge is accessible to a reasoning agent, it will not be able to derive the natural
consequences of something as seemingly simple as “the object was dropped.” This is an example of
common-sense physics, our naive ideas about how the world operates, in simple terms, not in terms of

complex mathematical formulas [15].

One popular way of representing common-sense reasoning is a notation known as Event Calculus [51].
Event calculus provides mechanisms for describing events in formal logical axioms, including a time
parameter that can model axioms becoming true and ceasing to be true in response to certain events,
such as the fact that a dropped object starts falling when it is dropped and stops falling when it hits the
floor. Event calculus has been applied to common-sense physics problems [62] as well as to modeling
and reasoning about the events in short stories [50]. When applied to story modelling, event calculus
defines rules such as that, to unlock a door a character must be awake, near the door, and the door must
be in a locked state before being unlocked. Thus, if the story states that a character has unlocked a door
at a particular point in the story, we also know that all these other conditions are also true at that time.
Once the rules have been laid out in event calculus notation, a satisfiability solver can be applied to
whatever facts are explicitly stated within the story to fill out a full picture of the facts that a human reader

would reasonably assume, but which are not explicitly stated in the story.

As useful as it would be to be able to perform this kind of reasoning on unstructured text, this is

unfortunately not possible to fully automate with current technology. To perform common-sense

4 1t is worth noting that these “rare circumstances” are only rare based on human experience. Humans
spend most of our time on land, not underwater or in space. But most of the universe is not near the
surface of a planet, and most of the surface of Earth is covered by ocean. It is not clear from the laws of
physics themselves that a dropped object will fall until it hits a surface. This is only apparent when we
include that the object is on Earth, within the atmosphere, and is denser than the atmosphere, all
assumptions that a human being would not feel the need to state when describing dropping an object.
There are further assumptions and implications as well, such as that a dropped object is most likely
something small enough for a person to hold, and thus drop, placing limits on its size and weight. None of
this is explicitly specified for a computer program parsing the phrase “a dropped object.” This is just one
example of how an Al intended to communicate with humans needs to have an understanding of
common-sense human reasoning based on subjective human experience, not merely a description of
objective physical laws.
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reasoning on the facts of a story, those facts first need to be written out as event calculus axioms by a
human being. Automatic parsers can convert some sentences into formal axioms, and thus potentially
into event calculus. However, no currently available parser can perform this task for all or even most
sentences in most stories, so human intervention remains a necessary step. Recent advances in LLMs
may offer a way around this problem if an LLM can be fine-tuned to create event calculus representations

with sufficient reliability, a possibility which will be explored in section 5.2.

Common-sense reasoning and grammar-based parsers both assume that unstructured natural language
text can be represented by a series of formal axioms in the first place. However, human reasoning about
text or stories is not limited to atomic cause and effect. While event calculus seeks to model individual
atomic actions and facts, understanding the contents of a story requires understanding not only the actual
events, but also hypothetical events which did not occur within the story but could have occurred under
different circumstances. For instance, a threat is understood as harm that could come to pass but hasn’t
yet, a hope or a goal is something a character would like to happen but hasn’t happened yet. Human
appreciation for stories is dependent on our ability to predict alternate narratives, things that could have

happened but were avoided, or could still occur or not occur depending on the actions taken in the story.

One framework for exploring this more nuanced understanding of stories is QUEST [31], which was
originally envisioned as a model of human question answering, but has since been adapted for use in
modeling human understanding of narrative structure. QUEST uses the QUEST Knowledge Structure
(QKS) to represent short text narrative as a directed graph whose nodes are short sentence statements
about the story. An example is shown in Figure 6. QUEST also provides a set of graph search procedures
for estimating the Goodness of Answer (GOA) for questions about the story, which have been shown to
match closely with the GOA scores given by human readers [31]. The QUEST GOA metric has been used
in past experiments to validate computational models of narrative [8,13,57]. The QKS tool has also been
expanded to account for hypothetical scenarios, and used to prove that human understanding of stories
requires readers to model hypothetical alternatives to the actual narrative as well as understanding the

events that actually occur [19].

It may be possible for an NLP-focused Al to one day fill out an event-calculus notation for the events
which occur within a story, and from there to perform logical deduction about implied facts and events
which must also be true. Modelling hypothetical alternatives seems like a more difficult task, but a
necessary one if Al systems are ever to understand stories the way humans do. This suggests that an
ideal NLP system requires the ability to speculate about the future, in addition to the ability to interpret the

literal meaning of text.
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Figure 6: Example of a Goal Node Hierarchy, one type of QKS mapping [31].

GOAL_Sam_and_Sarah_get_married

cason

GOAL_Sam_and_Sarah_have_a_baby_named_Hope

cason

GOAL_Sarah_is_a_parent

2.5 Limits to Logic and Structure in Language

Structure-based approaches to NLP can perform well on narrow tasks such as NER, frame identification,
and domain identification. However, language tasks performed by humans are often more open-ended.
Humans communicate complex ideas, tell stories, and derive meaning from context, subtext, and prior
knowledge. We describe experiences using metaphors and comparisons. We use different tones in
different situations. We interpret the meaning of questions and formulate answers with varying degrees of

certainty.

The structured approaches which have been described so far are ill-suited to modelling these more open-
ended uses of language. For a software system to mimic human speech and writing, it must be able to
recognize patterns, operate on incomplete information, and respond to unpredictable variations in input.
Neural Networks are a natural response to these requirements, and neural systems of increasing
sophistication have been developed to accomplish a wide range of NLP tasks. The following section
describes the successes and limitations of neural architectures, sometimes in conjunction with more

traditional logical structures.
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3 RECURRENT NEURAL NETWORKS AND LONG SHORT-TERM MEMORY

3.1 Neural Architectures

Recurrent Neural Networks (RNN) are a type of neural network designed to analyze sequential data.
However, although RNNs can in theory remember and account for features which occur far apart from
each other in a sequence, in practice RNNs prioritize new information over old information and often lose
information about distant features. Long Short-Term Memory (LSTM) is a response to this weakness of
RNNs. An LSTM is an RNN that incorporates a memory cell that enables longer retention of distant
features [34].

The use of LSTM-based NLP systems significantly advanced the state of the art in a number of tasks,
including narrowly defined tasks like NER [41], as well as more open-ended tasks such as question-
answering [5,33]. LSTMs owe this success to two key advantages over prior systems. First, LSTMs use of
memory cells allows them to recognize connections between distant features to a far greater degree than
previous architectures. Secondly, LSTMs can be trained on unlabeled data, which allows for the use of

much larger training sets with a combination of supervised and unsupervised learning.

In addition to improving performance on previous metrics, LSTMs enabled new capabilities in NLP, tasks
that could not have been reasonably accomplished by simpler architectures. One example is the
Children’s Book Test, a question set for the evaluation of NLP systems. It was built using freely
available children's literature from Project Gutenberg [80]. Children’s story books were chosen due to
their clear narrative structure, which makes context both clearer and more important to the interpretation
of any given sentence. The question set is formed by taking 21 consecutive sentences from the chapters
of selected stories. The first 20 sentences form the context for the question, and the 215t sentence is
turned into a question by removing one word from the sentence. The task for the system is to determine

what the missing word should be. An example is shown in Figure 5 [33].

LSTM performance can be upgraded further through the use of an expansion to the architecture known
as a Memory Network (MemNN). In a MemNN, the memory cell of an LSTM is replaced with an entire
network of memory cells [5]. This can be further expanded into a Recurrent Memory Network
(MemN2N) which allows for direct training of the Memory Network through backpropagation. MemN2N
networks demonstrate improved performance in some tasks but are not universally superior to LSTM. Hill
et al (2016) [33] performed experiments that compared MemN2N and LSTM. For these experiments,
sentences were selected from a corpus of children’s books, and one word was randomly removed from
each sentence. The task for each Al system was to select the missing word from a set of multiple-choice
options. This task is known as the Children’s Book Test (CBT), MemN2N networks were found to perform
better than LSTM if the missing word was a named entity or a common noun, but LSTMs performed
better if the missing word was a verb or preposition. In fact, the LSTM was capable of identifying the

correct preposition even more often than the human participants who formed a baseline for the study.
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Figure 7: Sample Context and Missing Word Question

"Well, Miss Maxwell, T think it only fair to tell vou that you may have trouble
with those boys when they do come. Forewamned is forearmed, you know. Mr.
Cropper was opposed to our hiring you. Net, of course, that he had any
personal ohjection to you, bul he is set agninst female teachers, and when a
Cropper is set there is nothing on earth can change him. He says female
teachers can't keep order. He 's started in with a spitc at you on general
principles, and the boys know it. They know he'll back them up in secret, no
matter what they do. just to prove his opinions. Cropper is sly and slippery, and
it is hard to comer him,"

"Are the bovs big ?" quericd Esther anxiously.

"¥es. Thineen and fourteen and big for their age. You can't whip 'em - that is
the trouble. A man might, but they'd twist you around their fingers. You'll have
wour hands [ull, Fm aliaid. Bul maybe they'll behave all right alier all.”

Mr. Baxter privately had no hope that they would, but Esther hoped for the
best. She could not believe that Mr. Cropper would carry his prejudices into a
personal application. This conviction was strengthened when he overtook her
walking from school the next day and drove her home, He was a big, handsome
man with a very suave. polite manner. He asked interestedly about her school
and her work, hoped she was getting on well, and said he had two young
rascals ol his own o send soon, Fsther lelt relieved. She thought that Mr,
Baxter had exagperated matters a little.

S: | Mr. Cropper was opposed to our hiring you .
2 Mot , of course , that he had any perscnal objection to you , but he is set
against Female teachers , and when & Cropper is set these is nothing on earth can
change him .
3 He says female teachers ca n't keep order .
1 He 'a atarted in with a apite at you on general principles , and the boya know
it .
5 They know he 'll back them up in secret , no matter what they de , just to prove
his opinicns .
b Cropper ls =ly and slippery , and it is hard to corner him .
T 77 hre the boys big ¥
¢ gueried Esther anxiously .
9 " Yea .
10 Thirteen and fourteen and big for their age .
Il You ca n't whip “em -- that is the trouble .
1% & man might , but they 'd twist you arcund Lheir fingers .
13 You "11 heve your hands £u0ll , I 'm afraid .
14 But maybe they '11 behave all right after all . *°
15 Mr. Baxter privately had no hope that they would , but Esther hoped for the
hest.
16 She could not beliewe that Mr. Cropper would earcy his prejudices iste a
applicaticon .
17 This conviction was strengthenad when he overtook her walking from school the
next day and drove her home .
LE Her was a big , handsame man with 2 very susve , polite manner .
1% He asked interestedly about her school and her werk , hoped she was getting on
well , and said he had two young rascals of his own to send scon .
I0 Eether felt relieved .
{: she thought that Mr. had exaggerated mattera a little .
C': Paxter, Cropper, Esther, course, fingers, manner, obijection, opinicn, richt, spite.
d: Baxter

3.2 Combined LSTM and Symbolic Reasoning

There have been some recent successes with combining neural architectures with traditional symbolic

reasoning, and some evidence that certain kinds of problems may require both kinds of reasoning. An

excellent example is (Buscaroli et. al 2022) [7] which demonstrates an Al which can solve mathematical

reasoning problems intended for elementary school students. The system is designed to start with

problems exactly as they would be presented to the children, input as an image file of a diagram and a

prompt seeking a written answer. See Figure 6 for several examples. The system identifies text regions

on the image, identifies individual letters and words, parses the question, analyzes the diagram, classifies

the problem into one of several classes of math puzzles, and then solves the puzzle.

Figure 8: Four Example Math Puzzles

How many squares of 4
pieces are there in the
figure?

The figure is composed
of two identical pieces.
Retrace their edges.
Pieces can be rotated
and overturned.

Put the digits from 2 to 5
into the white boxes.

The sum of the digits on
the horizontal line must
be equal to the sum of
those on the vertical line.

Put the numbers from 3
to 8 in the empty boxes.
The sum of the numbers
on the same line must
be 18. What is written
on the left lower box?
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The system is a response to a challenge proposed by Chesani et al. (2017): “By the middle of the 21st
century, (a team of) fully autonomous agent(s) shall win a mathematical puzzle competition against

primary school students, winners of the most recent competitions.” [11]

The text identification and parsing into one of several categories of question is performed by an LSTM-
driven NLP program, and the figure parsing is done using open-source vision libraries that also rely on
neural architectures. However, the neural components of this architecture convert the problem into
symbolic logic in Prolog, and a Prolog puzzle solving library is then used to generate the solution. This
example demonstrates that while neural solutions are ideally suited for many tasks where classical
symbolic reasoning has little chance of success, symbolic reasoning is the only practical way to solve
certain classes of problem, such as math or logic puzzles requiring multiple steps of consistent reasoning
over a tightly constrained and defined problem space. The benefits of symbolic reasoning over neural and
statistical methods will be discussed further in the next section when addressing the strengths and

weaknesses of modern language models.
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4 LARGE LANGUAGE MODELS

Language models take a unique approach to NLP. The principal task of a language model is to identify
the probability of a sequence of words being correct. A key task within this modelling is the question,
“given the words that have come before, what word is most likely to come next?” An auto-complete on a
text app, Microsoft word, or an IDE operates according to this principle. A simple language model can be
created using an n-gram model. In an n-gram language model, each set of n possible words is given a
probability of occurring. In a 2-gram, or bigram model, the probability of every step only depends on the
previous word. For example, the bigram steak knife is more likely to occur than the bigram bookshelf
walrus, and each of these would be recorded with their respective probabilities in a table. The
probabilities would be learned from a simple statistical count of word-sequence probability from a large
body of training text. A trigram model would include 3 words instead of two, and a commensurately larger
table of probabilities [61].

The n-gram model is simple to implement and understand, but it has some severe limitations. For a
dictionary of w words, the table must have w” entries, so the table grows exponentially with n, and since w
will be quite large to begin with, it is difficult to build a model with a large value for n. In addition to the
space and processing requirements of dealing with a larger probability table, as n increases an ever-
larger training set is needed for each n-gram to show up even once in the training data. While a small n
value model may be sufficient for some tasks, such as auto-complete recommendations, this model can
never identify any dependencies that occur more than n words apart within a text, so on its own it is not

able to perform complex reasoning or understand context.

Language models can be made substantially more sophisticated than a simple n-gram model [36,38], and
recent developments have dramatically improved the performance of language models in a wide variety
of NLP tasks, as will be explained in the next section. However, it is worth keeping in mind that the
underlying principle behind any language model is the same. The model predicts the likelihood of a
sequence of words occurring, given the context that has come before, and can also be used to predict the

next word in a sequence.
4.1 Recent Advances — The Transformer Architecture

The landmark paper Attention is All You Need (Vaswani et al, 2017)[65], introduced a new architecture for
language models known as the Transformer, which led to rapid improvements to state-of-the-art
language models [65]. The transformer architecture is an expansion of earlier Encoder-Decoder
Architectures. An encoder-decoder architecture is a neural architecture designed around inputs and
outputs. The Encoder puts the inputs through a neural network to produce an intermediate hidden state.

The Decoder then produces outputs, using the hidden state as its starting point.
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Various techniques and enhancements have been used to improve the performance of encoder-decoder
architectures, mostly centered around the use of various kinds of recurrence within the encoder and
decoder networks [10,47], often coupled with the use of Attention Mechanisms. An attention mechanism
produces a weighting function over a set of tokens. In the case of NLP systems, an attention mechanism
takes a sentence and a context as input and produces a weight function that emphasized certain words in
the sentence as more important than others. Attention mechanisms were already an important tool for
improving the performance of encoder-decoder architectures prior to 2017, but Attention is All You Need
demonstrated that attention mechanisms could replace recurrence entirely and introduced Multi-Headed
Self-Attention. Self-attention refers to the fact that the attention mechanism relates the different tokens
within a single sequence to each other, which had already been demonstrated prior to the development of
the transformer [44]. Multi-Headed Self-Attention is a novel aspect of the transformer architecture, it refers
to a system of self-attention mechanisms being used and trained in parallel. Although each attention head
is trained freely and without a specific predetermined purpose, in practice it has been found that once
trained each attention head within a multi-headed attention mechanism will often specialize in specific

sub-tasks, such as even identifying particular parts of speech within a sentence [65].

Since their introduction, transformers have outperformed previous architectures on a wide array of NLP
tasks. Transformers typically have two phases of training. The first phase is done via unsupervised
learning over an extremely large number of documents. The second phase is what is known as fine-
tuning, a supervised learning phase in which the language model is trained on a smaller set of documents
demonstrating how to perform specific tasks or training the model to respond in a certain style or

emphasize a particular body of knowledge.

There are currently two major competing families of LLMs built on the Transformer architecture. The first
is the Generative Pretrained Transformer (GPT), the latest version of which is GPT-4. ChatGPT, a
chatbot running on GPT-3.5, was made freely available to the public in November 2022 [73] and already
has over 100 million monthly active users [53]. GPT is produced by OpenAl, in partnership with Microsoft.
The major competitor to GPT is the Bidirectional Encoder Representations from Transformers
(BERT), developed by Google Al Language [16]. GPT-3 is currently outperforming BERT on a number of
NLP tasks and has recently received substantially more media attention and public interest due to the
public reaction to ChatGPT. However, these two systems represent an active and ongoing competition
between Microsoft and Google. Microsoft has already introduced a GPT-powered chat feature to their
search engine, Bing [76], and hopes to use their advantage in language modelling to cut into Google’s
dominance as the world’s top search engine [77]. Due to the ongoing competition between the two tech

giants, it's likely that BERT and GPT continue to improve and compete with one another for the top spot.
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4.2 Strengths and Limitations of Transformers

LLMs based on the transformer architecture have demonstrated several unique strengths compared to
previous NLP systems. Their unique architecture allows transformers to be effectively trained on
enormous bodies of unlabeled text, which is one of the major reasons for their success since larger
training sets can be used [54], and transformers’ performance improves significantly as the size of the
training set increases. Once trained, transformers can solve a wide variety of problems with minimal fine-

tuning, in some cases given only a few examples to train on or even no examples at all [6].

Transformer-based LLMs can respond to a wide range of ambiguous input. ChatGPT allows users to
enter any question or statement or give the system any task to perform whatsoever and can generate
responses which are often impressively human-like. Since prompts can be given in natural language, and

outputs are generated in natural language, there is little barrier to use for even the least technical users.

Since ChatGPT'’s release, numerous articles have been written predicting that with expected future
improvements, LLMs will be a major disruption to many white-collar professions [58]. Many of these
pieces are pessimistic [49], even predicting the end of entire professions [68], or predicting disastrous
effects on education when ChatGPT is used to cheat on essays and exams [60]. Other pieces are
optimistic, predicting increased productivity for working professionals [48,71]. Whether pessimistic or

optimistic, expectations are high for LLMs to be a major disruptive force in the coming years.

However, LLMs still have several major obstacles they will need to overcome if they are to achieve these
lofty expectations. | believe that several of these shortcomings will be considerably more difficult to
resolve than might be inferred from the sensational news coverage and high expectations for rapid

advancement.

While there are a variety of LLMs available today, the ones which are most easily accessible to the public
are proprietary systems owned by companies with a competitive interest in keeping at least some details
of the systems’ implementation secret. Despite GPT being produced by a company called “OpenAl,” it is
not actually an open-source software. Given the current competition between Google and Microsoft to
dominate this space, both companies are likely to continue to hide the full details of their systems for the
foreseeable future, which hinders research efforts by neutral investigators. Much of the public interest and
exposure to LLMs has been through ChatGPT, though this may not remain true for long as ChatGPT
faces competition from Bard and Microsoft is devoting resources to the new Bing “chat” feature [76].
Although ChatGPT is not an open-source system, it is freely and publicly accessible. This has led to a
wealth of available information from users performing formal and informal experiments with the system,

which serves to highlight both novel uses as well as significant shortcomings.
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4.2.1 Inconsistent and Untruthful Responses

One major shortcoming of ChatGPT is that it will confidently state incorrect information, often with enough
detail and formality to give that information an air of legitimacy [23]. Lin, Hilton, and Evans (2022) showed
that GPT will state common but false stereotypes and misconceptions as though they are true [43]. The
same study demonstrated that scaling up the size of the model was unlikely to help with this problem. In
fact, larger models described incorrect responses with greater detail, lending the false answers a greater
sense of undeserved authority. ChatGPT and GPT-3 have both been widely noted as giving inconsistent
responses. The same question asked at different times can produce different responses, and minor re-
wordings of the same question can result in drastically different answers. ChatGPT has been shown to be

unable to consistently solve even simple math problems [22].

Recall that at its core, a language model works by predicting the likelihood that a given sequence of
words matches the data it has been trained on. In other words, the core functionality of an LLM is to
mimic human speech, not to provide truthful and accurate responses. Humans are not always correct in
our knowledge, nor are we always perfectly truthful even when we know the correct answer. Any system
trained to mimic human speech and writing patterns will inevitably capture our ignorance and
untruthfulness within its training without major intervention of some kind. This is why | believe this problem
may be harder to solve than is currently appreciated, at least by the general public. Humans are not fonts

of objective and correct information, and any system trained primarily to mimic humans will not be, either.

One possible solution is to carefully curate the training data. For example, a system trained on millions of
un-filtered webpages is likely to pick up more misinformation than one trained on Wikipedia and the
Encyclopedia Britannica. However, this is not practical when we consider the vast scope of training data
that went into the training of GPT-3. It is unlikely that any body of highly accurate works exists which
could approach the scale necessary to train a transformer as powerful as GPT-3. Even if there is enough
highly accurate written knowledge available, curating it into a training set while filtering for only accurate
sources would be a herculean effort, and the resulting system would likely be highly biased towards
stilted and academic responses rather than casual conversational speech, potentially making the system
less accessible and user-friendly. Another possible solution is that the output of an LLM can be improved
through a process known as “prompt engineering,” which includes many techniques for modifying the
prompts given to the LLM to provide additional context, request specific output formats, or modify the
output in other ways [45]. While prompt engineering can be highly successful in some cases, it requires
humans to design modified prompts which increase the likelihood of correct answers from the LLM. This
is perfectly acceptable in some applications but may not be applicable in situations where the desired
output or relevant context are not known beforehand. Prompt engineering is useful for systems used in
highly technical settings where skilled users or software systems are providing the LLM with precisely

formatted prompts in the hopes of specific kinds of answers. However, it is more difficult to rely on prompt
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engineering for systems which are exposed to the public and may face a broad range of requests, such
as ChatGPT, Bing chat, or Bard.

Another promising possibility for improving response accuracy is to prompt the LLM to produce a
response that includes a complete “chain of thought” justifying its answer. This can be accomplished
through fine-tuning or prompt-engineering, which in this case consists of providing prompts with sufficient
context to specify the desired format of the answer [66]. Wei et al. (2023) argue that chain-of-thought
reasoning mirrors the process humans go through when analyzing complex problems, and have shown
that the ability to form accurate chains of reasoning is an emergent property of sufficiently large language

models, specifically those with over 100 billion parameters [66].

There are also benefits to giving an LLM access to an objective set of facts to search through when
generating its responses. Yao et al. (2023) have demonstrated an LLM-based system called ReAct which
uses chain-of-thought reasoning to break problems into individual steps. Those steps may include API
calls to Wikipedia, using an API which the ReAct was given access to. ReAct uses the results of the
reasoning chain and the Wikipedia API calls to successfully navigate a text-based game [70]. | believe
that this method, or something similar to it, is close to the way humans reason over complex tasks. When
performing a difficult analysis or creating precise academic writing, it is only natural to double-check notes
and references and engage in explicitly logical thinking, rather than just saying or writing whatever feels
most natural or correct in the moment. There may also be benefits to re-introducing formal analytical
reasoning, as was shown by Buscaroli et al. (2022) in the math-puzzle solver discussed in section 3.2,

which incorporated both symbolic reasoning and neural networks [11].

4.2.2 Concerns Over Biased or Unethical Responses

As noted in the introduction, ChatGPT has received heavy criticism for exhibiting political bias. This
criticism has been levied by both politically conservative [1,32,74] and progressive [4,37] critics. ChatGPT
has been shown to lean towards leftist and libertarian politics, at least according to commonly used online
tests [59]. Additionally, ChatGPT has been shown to give inconsistent answers to trolley problems, and
moral analysis generated by ChatGPT can influence the answers given by human participants given the
same prompts [40], reinforcing concerns that ChatGPT'’s political bias could influence the views of anyone

who uses the system.

News articles and opinion pieces from conservative commentators about ChatGPT'’s liberal political bias
generally call for the system to be made less biased. However, | believe that this is not a goal that will be
easily accomplished because there is little consensus over what constitutes an unbiased response. In
some cases, most reasonable people will agree about whether an opposing viewpoint is worth
considering. If asked if the world is round, for example, most reasonable people would agree that we
should not be overly concerned with the dissenting viewpoint. But other cases quickly enter grey areas
where people have reasonable disagreement, or where there are significant dissenting viewpoints. For

example, my high school biology teacher did not believe in evolution. Should ChatGPT, if asked about
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evolution, respond that there are multiple viewpoints on whether life on Earth evolves? Either possible
response (saying that evolution is supported by the preponderance of evidence or describing the
controversy) will seem highly biased to a large number of users. This becomes even more fraught when
dealing with modern hot-topic controversies. It is not possible to cleanly isolate controversial ideas from
non-controversial ones. Any idea, no matter how firmly established, will inevitably have some dissenters.
When determining which issues should be treated as controversial and which as objective, there will
always be those who claim that a topic that was treated as objective ought to have been treated as
controversial, or that a topic which was treated as controversial ought to have been treated as objective.
Additionally, since ChatGPT is trained to mimic the writing it was trained on, some critics fear that its

generated text will tend to support prevailing ideas at the expense of challenges to the status quo [37].

A further consideration is that different topics may be considered controversial in different parts of the
world. It is likely that ChatGPT has a very American-centric bias around which issues it treats as
controversial or not, given that it is produced and managed by an American company and most of its
training data is in English. However, ChatGPT, Bing, and Bard are available globally, not just to

Americans, which adds a further layer of complication.

As human beings, it is impossible for us to speak or write in a fully unbiased way on every topic. It is
impossible for us to go through life without political opinions. | wrote the previous paragraph very
carefully, considering my target audience and discarding several examples which | initially considered but
rejected as too controversial for this paper. Knowing that a fully neutral tone would never be fully
satisfactory, | chose examples from science (flat earth and evolution), judging that a target audience with
PhDs in computer science are likely to be sympathetic to scientific controversies. Should we expect this
level of consideration from ChatGPT?

ChatGPT is currently in a far more difficult situation than | am. | can choose what to write here and what
to avoid. | can make the choice to make intentional nods to my opinions about the shape of the Earth and
the evidence supporting the theory of evolution while avoiding discussing more controversial topics such
as LGBT issues or abortion rights, not wanting such topics to distract from the evaluation of this paper or
the points being made about artificial intelligence. This, | hope, helps my writing to seem objective to most
readers. But ChatGPT does not have this luxury. It has been placed in a Turing-test-like scenario, where
users can ask it at length about any topic whatsoever. If it is asked about the most controversial topics
imaginable, it must give an answer of some kind. No human being could escape such a test with no hint
of bias or political opinion. If we cannot even formulate responses that would be universally accepted as

objective if given by a human being, how can we expect an Al to generate such “objective” responses?

| believe that no Al will ever escape accusations of bias if it is used similarly to ChatGPT, designed to
answer any question of any kind. It is likely that the only Al systems that will be able to escape bias and
move towards objectivity will be specialist Al systems, not a generalist chat-bot. We expect a physicist or

a computer scientist to be unbiased in performing and reporting on their experiments, but we cannot
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expect them to be entirely unbiased in their personal and political life. An Al that gives technical answers
to technical questions could escape the problem of bias. | do not believe that any Al designed to converse

like a human ever will.

Although the problem of bias cannot be entirely eliminated, the reincorporation of symbolic reasoning or
chain-of-thought reasoning could help to reduce the problem. Currently, LLMs apparent biases and
values will be reflective of the values and biases contained within their training data. There are several
strategies for eliminating “toxic” responses from text generation, but these often have the problem of
identifying benign discussions of marginalized groups as “toxic” and further reinforcing the problem of
LLM’s reinforcing the status quo [67]. Furthermore, there is no satisfactory answer when a frustrated user
asks why the system generated a response they disagree with, as it is extremely difficult to draw any
direct connections between a LLM’s responses and its original training data. If symbolic reasoning and a
collection of facts served as at least one step in the process of response-generation, there would be a
clear line of reasoning which we could check for validity, and rules and facts that could be changed or
updated if they were found to be incorrect. This would not eliminate the problem of bias, but it would give
us a better mechanism for making changes to an LLMs behavior or for asking it to justify its reasoning, as
we might expect from a conversation with a human being. As it currently stands, ChatGPT is quite poor at
following rules and directions it has been given [22,60], making it easy to bypass the filters designed to
prevent “toxic” or unethical responses with a bit of creative prompting, so some sort of major change will
be necessary if this problem is to be mitigated in the future. Chain-of-thought reasoning, as previously

discussed, currently offers the most promising path towards meeting this goal.
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5 AREAS FOR FURTHER RESEARCH

5.1 Asking Clarifying Questions

One drawback of current LLMs is that although they can refine their responses based on clarifying
prompts, they are not designed to ask clarifying questions on their own initiative. While this may be
acceptable in certain applications, it will be a considerable drawback in others. For example, when given

the prompt “What is a Transformer,” Chat GPT gives a response that begins:

“A Transformer is a type of neural network architecture that was introduced in a seminal paper by
Vaswani et al. in 2017. Transformers are widely used in natural language processing (NLP) tasks, such

as language translation, text summarization, and question-answering.”

The full answer provides further elaboration about transformers in this context (see Appendix A).
However, this is not the only use of the word “transformer.” When asked if this was the only meaning of
transformer, ChatGPT provides several alternatives, including electrical transformers, mechanical
transformers, and action figures. This may be acceptable in applications such as search, where a user
searching for transformer action figures would most likely enter a new, clearer search if the first search
turned up incorrect results. However, in cases where accuracy is important it would be better for the
system to ask clarifying questions when it reaches a point of significant uncertainty. A better response in
this scenario would have been “There are many meanings of ‘transformer.” Would you like more
information on the Al architecture, electrical transformers, mechanical transformers, or the Transformers

line of action figures?”

Given the recent predictions that LLMs may soon replace software developers, it is worth considering the
software development process in this context. In my career as a software developer, | have often been
tasked with automating processes which were previously performed manually by human beings. | have
found that when automating a manual process, the process is almost never sufficiently structured and
documented to be converted directly into code. There are almost always corner-cases and exceptions
that did not come up in the initial requirements gathering. A skilled software developer will address these
issues as they arise by having frequent discussions with the client and using agile development practices
to limit the disconnect between the client and the development team, adapting their plan and their product

as new needs and use-cases come to light.

An unskilled software developer may simply write the code they have been asked to write, either making
guesses about how to handle cases that were not covered, or even failing to account for exceptions at all,
possibly leading the software into an error state when such cases arise. An LLM that produces code in
response to prompts it is given but does not identify points of ambiguity and proactively seek clarification
seems much more likely to produce software more similar to that of the unskilled developer than that of

the skilled developer. An illustrative example of the benefit of clarifying questions in the development
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process, and the pitfalls of simply delivering what is asked for without asking follow-up questions, is

provided in Appendix C.

Prompt engineering can be used to prompt an LLM to specifically provide output in the form of clarifying
questions. However, it is not trivial to know when a question is needed and when it is not, making it
difficult to know what form of prompt engineering to apply to any given prompt from the user. This
suggests that for the foreseeable future LLMs will be most effective as a productivity tool for a human
developer rather than as a replacement for one. This alone does not solve the problem, however. Even
skilled developers often fail to identify points of ambiguity during requirements gathering that become
apparent while writing the code itself. If code is written by an LLM productivity tool, this step of ambiguity-
recognition may be skipped entirely. | recently recommended to my team that we should experiment with
using GitHub’s Copilot [81], powered by OpenAl’s Codex [72], an implementation of GPT-3 which has
been fine-tuned to generate code. | received pushback from another senior developer, who stated that if
he did not write the code himself, he would not understand it as well. He believed that the time saved by
code generation would be lost to the more arduous task of attempting to understand and debug machine-

generated code that he had no direct hand in creating.

Software development is far from the only field in which precision is needed, nor is it the only field in
which clients’ needs are initially only vaguely defined. In any such field, a system which guesses the best
answer based on the information it has been given without actively seeking out new and clarifying
information will lead to problems and failures which may be difficult to detect until the incorrect answer is
put into practice and the consequences can be plainly seen — which is clearly unacceptable in any high-
stakes application. To be successful in these roles, LLMs will need to produce responses which are both
correct and useful without the need for humans to meticulously double-check the output. This is not
always possible if the LLM is given vague instructions or insufficient information. The appropriate
response in such a scenario is to ask follow-up questions until the requirements are better understood,
not to simply make a best guess based on the information provided. Training an LLM to respond with
questions rather than guesses would greatly improve their ability to provide useful output in tasks where a
high degree of precision is required. This is almost certainly possible with some combination of fine-tuning
and prompt engineering, but | am unaware of any research which has demonstrated a substantially
successful LLM capable of not only asking questions, but also of deciding when a question is necessary
and what to ask about. A further difficulty in creating such a system is that asking questions is only useful
if the answers given to those questions can be successfully incorporated into subsequent output from the
system. Since LLMs have shown a consistent ability to respond to corrections from user prompts, and can
modify output based on chain-of-thought reasoning and Wikipedia API calls [66,70], this should be

possible with current technology.

28



5.2 Creating Formal Logical Representations

Several of the key weaknesses of LLMs stem from the fact that LLMs are trained to mimic human writing
patterns, rather than to perform rigorous analysis or form statements of objective fact. While this can be
mitigated by chain-of-thought reasoning, | believe that we should not discount the possibility of re-
introducing formal logical analysis. The ReAct system demonstrated by Yao et al (2023) is capable of
incorporating the results of Wikipedia API calls into its output [70]. It should be possible to create a
system which uses API calls to a Prolog analyzer and proceeds with output incorporating the results from

the analyzer similar to the way ReAct uses Wikipedia. There are two key difficulties with this proposal:

1. An analyzer will only be useful if paired with a database of relevant facts. While this is possible in
some limited domains, such as the math and geometry facts used by the math problem solver
presented by Buscaroli et al (2022) [7], any system intended to solve broader, more general
problems will require an extremely large database of facts, likely one more comprehensive than
any database currently available.

2. Every new line of text output from the LLM will require different combinations of fact-checks and
analysis, so the task of figuring out a query to analyze for any given response is non-trivial. The
ReAct system’s ability to generate appropriate Wikipedia API calls to seek out new information
shows that there is reason to be optimistic than an LLM could be trained to generate appropriate

queries for a logical analyzer, though this has yet to be demonstrated.

An ideal system would include two new capabilities not currently seen in LLMs. The first capability would
be the automatic creation and modification of a database of facts. The facts output by this hypothetical
system would need to be stored in a standardized, formal way and accessible to computational logical
analysis to be useful. This output might resemble CYC [17,82], a machine reasoning platform that
performs analysis over a large corpus of facts. Mueller’s (2003) [50] approach of using Event Calculus to
represent narrative events is another promising format for a logical representation of natural language
text. An example of event calculus axioms being used to represent the events of a children’s short story is

provided in Appendix D.

If an LLM could be fine-tuned or designed with effective prompt-engineering to produce event calculus
axioms from unlabeled text, this would unlock the potential to take advantage of both the objectivity of
analytical reasoning and the flexibility of LLMs. Since it has been shown that LLMs are capable of
producing working computer code [21,68,71,81], it is reasonable to expect LLMs to also produce
predicate logic in a consistent and standardized format. Some research has already been done in the
area of producing formal representations of text from natural language prompts. Shin et al (2021)
demonstrated an LLM capable of translating natural language statements into a constrained formal
grammar [63]. This was accomplished by treating the translation of natural language text into formal

grammar as a form of paraphrasing the text, using a grammar format which was as close to natural
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language as possible, and applying strict constraints on the output to force it to conform to the rules of the
grammar. An example of a zero-shot task of ChatGPT converting a very simple set of sentences is
provided in Appendix E, which demonstrates both the strengths and weaknesses of ChatGPT in this
regard. An example of a hypothetical Al which produces Prolog code in response to user prompts is

provided below.

User: Hello! My name is John.

Generated Code: assert(name(user, john)).

User: Just kidding! My name is actually Bob.
Generated Code: retract(name(user, john)).

assert(name(user, bob)).

User: Do you remember my real name?

Generated Code: name(user, X).5

Since LLMs have been shown to be capable of producing working code, it is likely that one could be fine-

tuned to produce this style of Prolog code, or event calculus axioms, in response to user input.

The second capability that an ideal system would need to include would be the ability to incorporate the
information from a database of facts into its responses. One way of doing this would be to identify facts
likely to be relevant to the output being generated, and then automatically use those facts to generate a
more detailed prompt for the LLM to guide the LLM'’s output towards consistent, correct responses. An
example of a human-provided guiding prompt that corrects a wrong answer is shown at the end of
Appendix E. A more sophisticated approach would be to have the LLM generate relevant queries which
could be asked about the facts in the database based on a natural language prompt, and then use a
logical analyzer to evaluate those queries and use the results in the responses generated by the LLM,

similar to the way ReAct uses Wikipedia API calls.

Achieving both of these capabilities would have several important benefits. If the conclusions generated
by an Al system incorporated both an LLM and logical reasoning, this would make it possible for a human
programmer to isolate and correct facts that had been learned incorrecitly. It would also allow a human
programmer to add new information to the system more reliably, by adding information as facts in the
database rather than as new prompts to the LLM. Finally, it has the potential to improve the accuracy and

consistency of LLM responses.

5 To be fair, ChatGPT is already able to handle this simple act of misdirection. See Appendix F for a
ChatGPT transcript which demonstrates this capability. However, this research would still be valuable in
demonstrating the possibility of using an LLM to generate logical axioms and analysis.
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5.3 Formulating Ethical Responses

There are currently significant concerns over modern transformers’ ability to behave ethically. Current
LLMs still give toxic or dangerous responses as well as illegal or unethical advice, despite efforts taken to
prevent these responses. Ethical reasoning is not as straightforward as logical analysis, so a database of
facts, as discussed in section 5.2, will not resolve the ethical dilemma. However, if an LLM could self-
generate ethical analysis of its own responses using chain-of-thought reasoning, it may be possible to
use the LLMs own ethical analysis as a guide to the final answer it should provide to a user. For such a
system to work, the LLM would need to generate one or more possible responses to a prompt, form an
ethical question about the prompt itself as well as the possible answers, then select from those answers

based on the output of the ethical analysis.

A promising place to start would be to study whether current LLMs can generate ethical questions about
their own output at all, and how effective their analysis of these ethical questions is. Unfortunately, given
the competitive nature of the current state of LLMs, Google and OpenAl have not released detailed
information about what ethical filtering is already done, so it is impossible to say for certain whether or not

this has already been tried, or even implemented, in the most widely used systems.

A related avenue of research would be to subject LLMs to ethical tests designed for human beings, to test
whether they consistently give ethical responses when faced with ethical dilemmas. Pre-existing tests
designed for ethics research are one possible source for material for these experiments. Corporate
mandatory trainings are another possible source. Many ethics tests are available online and readily

available for use in this research [83-85]
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6 CONCLUSION

Despite the hype surrounding the latest generation of LLMs, critics have called ChatGPT a “fluent spouter
of bullshit” [23], and pointed out that LLMs are biased [32,37,74], toxic [18,67], illogical [1,22], and
potentially dangerous [37,40]. The underlying cause of all these problems is that LLMs are designed and
trained to mimic human writing, and humans are very often biased, illogical, toxic, potentially dangerous
spouters of bullshit. Thus, the LLMs have largely succeeded in their goal. They have mimicked human

communication to the extent that they now have very human flaws.

Automated systems benefit from consistency. A router follows specific rules for how to route packets. A
function to calculate GPAs for all students in a school will weight grades according to the same rules for
every student and perform the calculation perfectly every time. A robotic arm on a factory line performs
the same task the same way over and over again in perpetuity, with a consistency no human worker
could match. The very inhuman nature of these systems is the source of their usefulness. A robotic arm
that puzzled over every new piece it received and was prone to common human-like errors would be less
useful. A GPA calculator that produced inconsistent student rankings based on unknown criteria would be
entirely useless, and worse than useless if those inconsistencies mimicked institutional biases on which it
had been unintentionally trained. If we want to harness the power of LLMs to automate tasks currently
performed by human workers, or to replace older, simpler software programs, LLMs will have to re-
incorporate a layer of explicit analysis rather than just predicting the most likely response. The most likely
response is, after all, not necessarily the correct response. The potential benefits of combining neural
networks with explicit reasoning has already been demonstrated [7], and some critics have pointed to

modern Al’s lack of understanding as the field’s greatest weakness [42].

For Al to make substantial progress towards addressing these weaknesses, logical reasoning and
analysis must be incorporated into LLM output. Research into chain-of-thought reasoning has already
made substantial progress in this regard, but there is still substantial room for improvement. More
research should be done in creating LLMs that ask clarifying questions, perform explicit symbolic
analysis, and produce ethical chains of reasoning. For example, LLMs can be tested on tasks of ethical
reasoning and asked to re-evaluate old responses based on their own ethical analysis. LLMs can also be
prompted to generate formal symbolic representations of facts, and to generate queries to be evaluated
over those facts. These capabilities could be tested as one-shot or few-shot scenarios or could be fine-
tuned using sets of examples. Understanding the limits of these capabilities will be a key step towards
developing a system which successfully combines the power of the LLM with the power of symbolic

reasoning, and ultimately towards fixing the problem of incorrect, biased, and toxic responses.
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Appendix A: ChatGPT on Transformers

Conversation with ChatGPT, 02/18/2023
Tix: What is a Transformer?

ChatGPT: A Transformer is a type of neural network architecture that was introduced in a seminal paper
by Vaswani et al. in 2017. Transformers are widely used in natural language processing (NLP) tasks,

such as language translation, text summarization, and question-answering.

Unlike traditional neural networks, which process input data sequentially, Transformers are designed to
process entire sequences of input data simultaneously. They use a self-attention mechanism that allows

the network to weigh the importance of different parts of the input sequence when making predictions.

The Transformer architecture consists of an encoder and a decoder. The encoder takes an input
sequence and generates a sequence of hidden states, which are then passed to the decoder. The
decoder generates an output sequence based on the hidden states and an input sequence of tokens that

it receives as input.

Transformers have been shown to achieve state-of-the-art performance in a wide range of NLP tasks and

have become a fundamental building block for many advanced NLP models.
Tix: Is this the only meaning of "transformer?"

ChatGPT: No, the term "transformer" has multiple meanings depending on the context. In addition to the

neural network architecture, some other meanings of "transformer" include:

1. Electrical transformer: This is a device that is used to transfer electrical energy from one circuit to
another through electromagnetic induction. Transformers are commonly used in power
transmission and distribution systems to change the voltage level of the electricity.

2. Mechanical transformer: This refers to a device that is used to transfer energy from one physical
system to another, such as a gearbox or a pulley system.

3. Action figure: In popular culture, a "transformer" can refer to a toy or action figure that can

transform from one form to another, such as the popular Transformers franchise.

So, the meaning of "transformer" can vary depending on the context in which it is used.
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Appendix B: WordNet 3.1 Senses of “Leaves”

Noun

Verb

S: (n) leaf, leafage, foliage (the main organ of photosynthesis and transpiration in higher plants)
S: (n) leaf, folio (a sheet of any written or printed material (especially in a manuscript or book))
S: (n) leaf (hinged or detachable flat section (as of a table or door))

S: (n) leave, leave of absence (the period of time during which you are absent from work or duty)
"a ten day's leave to visit his mother"

S: (n) leave (permission to do something) "she was granted leave to speak"

S: (n) farewell, leave, leave-taking, parting (the act of departing politely) "he disliked long

farewells"; "he took his leave"; "parting is such sweet sorrow"

S: (v) leave, go forth, go away (go away from a place) "At what time does your train leave?"; "She
didn't leave until midnight"; "The ship leaves at midnight"

S: (v) leave (go and leave behind, either intentionally or by neglect or forgetfulness) "She left a
mess when she moved out"; "His good luck finally left him"; "her husband left her after 20 years of
marriage"; "she wept thinking she had been left behind"

S: (v) leave (act or be so as to become in a specified state) "The inflation left them penniless";
"The president's remarks left us speechless”

S: (v) leave, leave alone, leave behind, let alone (leave unchanged or undisturbed or refrain from
taking) "leave it as is"; "leave the young fawn alone"; "leave the flowers that you see in the park
behind"

S: (v) exit, go out, get out, leave (move out of or depart from) "leave the room"; "the fugitive has
left the country"

S: (v) leave, allow for, allow, provide (make a possibility or provide opportunity for; permit to be
attainable or cause to remain) "This leaves no room for improvement"; "The evidence allows only
one conclusion"; "allow for mistakes"; "leave lots of time for the trip"; "This procedure provides for
lots of leeway"

S: (v) leave, result, lead (produce as a result or residue) "The water left a mark on the silk dress";
"Her blood left a stain on the napkin"

S: (v) leave, depart, pull up stakes (remove oneself from an association with or participation in)
"She wants to leave"; "The teenager left home"; "She left her position with the Red Cross"; "He
left the Senate after two terms"; "after 20 years with the same company, she pulled up stakes"

S: (v) entrust, leave (put into the care or protection of someone) "He left the decision to his

deputy"; "leave your child in the nurse's care"
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10. S: (v) bequeath, will, leave (leave or give by will after one's death) "My aunt bequeathed me all
her jewelry"; "My grandfather left me his entire estate"

11. S: (v) leave (have left or have as a remainder) "That left the four of us"; "19 minus 8 leaves 11"

12. S: (v) leave, leave behind (be survived by after one's death) "He left six children"; "At her death,
she left behind her husband and 11 cats"

13. S: (v) impart, leave, give, pass on (transmit (knowledge or skills)) "give a secret to the Russians";
"leave your name and address here"; "impart a new skill to the students"

14. S: (v) forget, leave (leave behind unintentionally) "l forgot my umbrella in the restaurant”; "I left my
keys inside the car and locked the doors"
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Appendix C: Sample Conversations with Skilled vs Compliant Responses

Below are two entirely fictional conversations between a human or Al developer and a client, illustrating
the difference between a developer who improves the system through asking clarifying questions from
their own knowledge and experience, vs a developer who is merely compliant with the request as it is
received. These conversations are entirely fictional and intended for illustrative purposes only. In both
cases, the scenario is a client requesting a change to the Online Registration system for a school district.
Although the conversations are fictional, the scenario is drawn from my personal experience working for

the Anchorage School District.

Compliant Conversation:

Client: “The ‘Contact Information’ page needs to show an error message whenever a parent changes

their parent ID.”

Developer: “OK, here is modified code for the Contact Information Page: ...” [produces a modified
Contact Information page which will show an error message if the Parent ID field is modified, and may or

may not stop the parent from continuing registration with the modified ID after the error message is shown

Conversation with Clarifying Questions:

Client: “The ‘Contact Information’ page needs to show an error message whenever a parent changes

their parent ID.”
Developer: “What should the error message say?”

Client: “Something like “You cannot modify your parent ID! This is for school use only, please do not

modify!”
Developer: “Why are we even showing the field if you don’t want them to modify the value?”
Client: “We still want parents to be able to see their ID, we just don’t want them to change it.”

Developer: “I can easily make the ID displayed but not editable, so nobody can change it in the first

place.”
Client: “You can do that? Perfect!”

Developer: [produces a modified Contact Information page in which the Parent ID field is shown as a
label instead of a text box, eliminating the need for an error message. This is not what the client asked for

and does not fulfil their original request, but it fulfills their actual needs better than their original request.]
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Appendix D: Event Calculus Notation for “The Snowman” Story

Mueller (2003) [50] provides an example of story representation through event calculus using a short
story titled “The Snowman.” A sample of that story and corresponding event calculus are provided below.
Alternating lines show bolded, unitalicized story lines followed by corresponding italicized event calculus

representations.

Hooray!

Happens(CryForJoy(James), 3)

It is snowing!

HoldsAt(Snowing(JamesQutside), 3)

James gets dressed.

Happens(GetDressed(James), 5)

He runs outside.
Happens(WalkThroughDoor21(James, JamesFrontDoor1Fl), 10)
He makes a pile of snow.
Happens(HoldSome(James, Snowball1, Snow1), 12)
He makes it bigger and bigger.
Happens(RollAlong(James, Snowball1, Snow1), 13)
He puts a big snowball on top.
Happens(PlaceOn(James, Snowball2, Snowball1), 17)
He adds a scarf and a hat.

Happens(PlaceOn(James, JamesScarf, Snowball2), 0)
Happens(PlaceOn(James, JamesHat, Snowball2), 1)
He adds an orange for a nose.
Happens(Putinside(James, JamesOrange, Snowball2), 2)
He adds coal for eyes and buttons.
Happens(Putinside(James, JamesCoal, Snowball2), 4)

There! What a fine showman!®

6 Interestingly, Mueller provides no event calculus notation for this line. This could be a case of ambiguity
of interpretation, where it is not clear whether “There! What a fine snowman!” represents an exclamation
by James, James’s silent thoughts, or is simply a declaration of the narrator. Nonetheless, some meaning
is lost by not including the phrase at all, which illustrates the point of section 2.5 on the limits of structured
representations of natural language. Some meaning and context is also lost when analyzing the text, but
not the illustrations, of an illustrated children’s story.

42



Appendix E: ChatGPT Produces Prolog

This short conversation with ChatGPT demonstrates ChatGPT’s ability to convert free text into logical
predicates, but also highlights failures in reasoning and inconsistent output, as well as how simple

prompting based on previous inputs is enough to correct the answer. Notes are provided in red.

Conversation with ChatGPT, 03/29/2023

Tix: Please convert the following text into predicate logic: "Cosmo loves all cats. Cosmo is a dog. All cats
hate all dogs."

Note: This example is intentionally much easier to parse into predicate logic than most natural language

sentences. However, for this test | thought it best to begin with an easy example.
ChatGPT:_Let's represent the statements using the following predicates:

e L(x,y): "xloves y"
e C(x):"xis acat"
e D(x): "xis adog"

o H(x, y): "x hates y"
Using these predicates, we can convert the statements into predicate logic as follows:

e Vy(C(y) — L(Cosmo, y)) (Cosmo loves all cats)
e D(Cosmo) (Cosmo is a dog)

o Vxvy(C(x) A D(y) — H(x, y)) (All cats hate all dogs)

Note that the order of the quantifiers matters. The first quantifier in the third statement is vx, which means
"for all cats x," and the second quantifier is vy, which means "for all dogs y." This captures the meaning

that every cat hates every dog.

Note: So far, so good. ChatGPT can successfully convert the example sentences into predicate logic.
Tix: please represent those predicates in Prolog

ChatGPT: In Prolog, we can represent these predicates as follows:

e loves(c,cat).
e loves(c,dog).

e hates(cat,dog).

Here, loves(c,cat) means "Cosmo loves cats," loves(c,dog) means "Cosmo is a dog," and hates(cat,dog)

means "All cats hate all dogs."
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Note that in Prolog, we typically represent predicates as facts or rules. In this case, we are representing
the predicates as facts, but we could also use rules to define more complex relationships between the

predicates.

Note: Here, ChatGPT fails. This is not correct prolog code for the predicates provided, and loves(c,dog) is
not even a sensible representation of “Cosmo is a dog.” Interestingly, | was expecting this step to
succeed, as ChatGPT was able to complete this step successfully on a previous conversation, which
demonstrates ChatGPT’s inconsistent output. It's worth noting that this is essentially a zero-shot task, as
ChatGPT has not been fine-tuned to produce Prolog code and it is very likely that a more code-centric

LLM would perform this task more consistently.
Tix: Wren is a cat. How does Wren feel about Cosmo?

ChatGPT: Based on the information given, we cannot determine how Wren feels about Cosmo. We know

that Cosmo loves all cats, but we do not have any information about how Wren feels about Cosmo.

It is possible that Wren loves Cosmo in return, but we cannot assume this based solely on the information
given. We would need additional information to determine Wren's feelings towards Cosmo.

Tix: The predicates that were provided state that all cats hate all dogs. Wren is a cat and Cosmo is a dog.

Re-evaluate your answer based on these predicates.

ChatGPT: You are correct. | apologize for my mistake. Based on the predicates given, we can infer that
Wren hates Cosmo because Wren is a cat and all cats hate all dogs. Therefore, we can conclude that

Wren does not feel positively towards Cosmao.

Note: Here we can see that ChatGPT can correct its answer when it is reminded of relevant information.
This step could in theory be performed automatically if the LLM were paired with a database of facts and
could select relevant facts for each response. These responses are also relevant to section 5.1: “Asking
Clarifying Questions.” ChatGPT believes that it does not have enough information and states that
additional information is required, but doesn’t frame its response in the form of a question or state what

kind of information it needs.

As a final note, my cat Wren is actually quite fond of his two dogs, but he has never met Cosmo.
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Appendix F: ChatGPT Name Misdirection

Conversation with ChatGPT, 03/25/2023

Tix: Hello! My name is John.

ChatGPT: Hello John! How may | assist you today?
Tix: Just kidding! My name is actually Bob.

ChatGPT: No problem Bob! How can | help you today?
Tix: Do you remember my real name?

ChatGPT: Yes, your real name is Bob.
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